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Abstract

The Robinson–Schensted–Knuth (RSK) correspondence is
among the most important bijections in algebraic and
enumerative combinatorics. It generalizes a bijection between
two ubiquitous combinatorial objects, permutations and (pairs
of) Young tableaux. We will take a tour of the RSK
correspondence from the perspective of Fomin’s beautiful
“growth diagrams”. This approach to RSK leads more easily
to many important properties and generalizations.
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Question
Why beautiful bijections?



Permutations

Definition
A permutation of n is a rearrangement of the numbers 1, 2, . . . , n

Example

The six permutations of 3 are 123, 132, 213, 231, 312, and 321.

Fact
There are n! permutations of n.



The symmetric group

Definition
Permutations form the symmetric group Sn under composition
(as rearrangements).

The study of Sn leads to its irreducible representations, which are
indexed by partitions and described in terms of Young tableaux.



Ferrers diagrams

Definition
A partition λ of n is a nonincreasing list (λ1, λ2, . . . , λd) of
positive integers whose sum is n. We write λ ` n. The Ferrers
diagram of a λ is a set boxes drawn justfied into a corner whose
row lengths are λ1, λ2, . . . , λd .

Example

For example, λ = (3, 2, 2, 1) ` 8 has Ferrers diagram

and the transpose is (3, 2, 2, 1)ᵀ = (4, 3, 1)
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Standard Young tableaux

Definition
A standard Young tableau (SYT) is a Ferrers diagram with boxes
labeled such that they are increasing on rows and columns.

For example:
1 3 4
2 6
5 7
8

For non-example:
1 6 4
2 3
7 5
8
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Standard Young tableaux

Definition
A standard Young tableau (SYT) is a Ferrers diagram with boxes
labeled such that they are increasing on rows and columns.

For example:
1 3 4
2 6
5 7
8

We can also think of this as a sequence of steps, each adding one
box. For the example above,

∅ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂



Counting Young tableaux

Theorem (Frame–Robinson–Thrall)

The number of standard Young tableaux fλ is given by the
hook-length formula

fλ =
n!∏

c∈λ hc

where hc is the size of the hook at a cell c (includes c and all cells
below or to the right).

Example

Labeling the hook sizes of (4, 2, 1), we obtain

6 4 2 1
3 1
1

f(4,2,1) =
7!

6 · 4 · 2 · 1 · 3 · 1 · 1
= 35.
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A surprising connection between n! and fλ

∑
λ`n

f 2
λ = n!

Example

For n = 4,

4 3 2 1
4 2 1
1

3 2
2 1

4 1
2
1

4
3
2
1

4!
4·3·2·1

4!
4·2·1·1

4!
3·2·2·1

4!
4·2·1·1

4!
4·3·2·1

12 + 32 + 22 + 32 + 12 = 24 = 4!



A surprising connection between n! and fλ

∑
λ`n

f 2
λ = n!

Example

For n = 4,

4 3 2 1
4 2 1
1

3 2
2 1

4 1
2
1

4
3
2
1

4!
4·3·2·1

4!
4·2·1·1

4!
3·2·2·1

4!
4·2·1·1

4!
4·3·2·1

12 + 32 + 22 + 32 + 12 = 24 = 4!



A surprising connection between n! and fλ

∑
λ`n

f 2
λ = n!

Example

For n = 4,

4 3 2 1
4 2 1
1

3 2
2 1

4 1
2
1

4
3
2
1

4!
4·3·2·1

4!
4·2·1·1

4!
3·2·2·1

4!
4·2·1·1

4!
4·3·2·1

12 + 32 + 22 + 32 + 12 = 24 = 4!



A surprising connection between n! and fλ

∑
λ`n

f 2
λ = n!

This might remind you of the classic identity and undergraduate
combinatorial proof exercise.

n∑
k=0

(
n

k

)2

=

(
2n

n

)



Young’s lattice ∑
λ`n

fλ
2 = n!

∅
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Young’s lattice (hook shapes)
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A surprising connection between n! and fλ

We want a combinatorial proof of∑
λ`n

f 2
λ = n!.



Insertion algorithm

Definition
Given a permutation π, the insertion tableaux P(π) is obtained
by by starting from an empty standard Young tableaux and
inserting letters of π from left to right into the first row as follows.

1. If the letter is largest in the row, place it at the end.

2. Otherwise, it “bumps” the first larger label, which is then
inserted into the row below.

Example

Let’s find P(2736145)

∅ 2 2 7
2 3
7

2 3 6
7

1 3 6
2
7

1 3 4
2 6
7

1 3 4 5
2 6
7

↑ ↑ ↑ ↑ ↑ ↑ ↑ =
2 7 3 6 1 4 5 P(2736145)
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Recording tableaux

Example

Let’s find P(2736145)

∅ 2 2 7
2 3
7

2 3 6
7

1 3 6
2
7

1 3 4
2 6
7

1 3 4 5
2 6
7

↑ ↑ ↑ ↑ ↑ ↑ ↑ =
2 7 3 6 1 4 5 P(2736145)

The recording tableaux
Q(π) records the box added
to the shape at each step. Q(2736145) =

1 2 4 7
3 6
5

With both the insertion and recording tableaux, this process is
reversible!
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Robinston–Schensted

Theorem (Robinson 1938, Schensted 1961)

The map π
RS7−→ (P(π),Q(π)) is a bijection! It takes permutations

of n to pairs of standard Young tableaux with the same shape
λ ` n.

This is a bijective proof of ∑
λ`n

f 2
λ = n!



Question
How do you think RS(π) compares to RS(π−1)?



A beautiful symmetry

Theorem (Schützenberger)

P(π) = Q(π−1)
Q(π) = P(π−1)

Corollary

Involutions (permutations π = π−1) are in bijection with SYT.

Claim
A beautiful symmetry deserves a beautiful explanation.
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Fomin growth diagrams

Consider the permutation matrix for our π = 2736145.

A local map for cell ρ µ

ν λ

1. If there is an X, λ is
ν = µ = ρ plus a square in
the first row.

2. If ν = µ 6= ρ, λ is ν = µ
plus a square in the row
after ν\ρ.

3. Otherwise, λ = ν ∪ µ.

X

X

X

X

X

X

X

∅

∅

∅

∅

∅

∅

∅

∅

∅ ∅ ∅ ∅ ∅ ∅ ∅

∅ ∅ ∅ ∅

This is reversible! It is another description of Robinson-Schensted.
And it makes P(π) = Q(π−1) clear.
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Why?

Question
Why seek bijective proofs?
Why seek beautiful descriptions of bijections?

They do not simply verify, they clarify.
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Viennot shadow lines

Here’s another description. Again consider the permutation matrix
for our π = 2736145.
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Increasing and decreasing subsequences

The sequence 236 is a subsequence of π = 2736145. Can you find

a larger increasing subsequence?

Yes! 2345 has size 4.

What is the largest union of two increasing subsequences? 236, 145

has size 6. Next, we get 236, 145, 7 with 7.

Recall that P(π) and Q(π) have shape (4, 2, 1), which has partial

sums 4,6,7.
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Greene’s theorem

Theorem (Greene)

Let λ(π) = (λ1, λ2, . . .) be the shape of the tableaux in RSK(π).
Then λ1 + λ2 + · · ·+ λk is the maximal size of a union of k
increasing subsequences in π. Also, λᵀ1 + λᵀ2 + · · ·+ λᵀk is the
maximal size of a union of k decreasing subsequences in π.

Remark
Combined with the hook-length formula, this allows us to count
permutations with given maximal sizes of increasing and
decreasing subsequences.



A quick application

Corollary (Erdős-Szekeres 1935, Seidenberg 1959)

If π ∈ Snm+1, then either π has an increasing subsequence of
length n or a decreasing subsequence of length m.

Proof.
Suppose not for some π ∈ Snm+1 with RSK(π) = (P,Q). Then P
and Q must fit inside an n ×m rectangle, and so have at most nm
boxes.



Yet another Robinson–Schensted description

We can use Greene’s theorem to give a different description of RS.

π = 2736145

λ(2) λ(27) λ(273) λ(2736) λ(27361) λ(273614) λ(2736145)

λ(1) λ(21) λ(231) λ(2314) λ(23145) λ(236145) λ(2736145)

1 3 4 5
2 6
7

1 2 4 7
3 6
5
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Four descriptions of Robinson–Schensted

∅ 2 2 7
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(there are more...)



Semi-standard Young tableaux

Definition
A semi-standard Young tableau (SSYT) is weakly increasing on
rows and strictly increasing on columns.

1 1 2
2 4
3 5
5

This has weight x2
1x

2
2x3x4x

2
5 in the Schur function s(3,2,2,1)(x)...



Semi-standard Young tableaux

Semi-standard Young tableaux are enumerated by Schur functions.

Definition
Schur functions are defined by

sλ(x) =
∑

SSYTλ

xµ1
1 xµ2

2 · · ·

where µi is the number of times label i appears in the
semi-standard Young tableaux.

Schur functions are an important basis for symmetric functions.
They are characters of irreducible representations of the general
linear groups.



Robinson–Schensted–Knuth

Theorem (Knuth)

There is a bijection between N matrices and semi-standard Young
Tableaux.



RSK with Fomin growth

To allow multiples in the same row, column, or cell, simply
subdivide and order them left to right and top to bottom.
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Variations of RSK

What if we order our X’s in another way?
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Cauchy’s formulas

Recall the schur polynomials sλ(x) =
∑

SSYT xµ1
1 xµ2

2 · · · where µi is
the number of times label i appears in the semi-standard Young
tableaux.

∏
i ,j

1

1− xiyj
=
∑
λ

sλ(x)sλ(y)

∏
i ,j

(1− xiyj) =
∑
λ

sλᵀ(x)sλ(y)

RSK gives a combinatorial proof of the first, and RSK* gives a
combinatorial proof of the second.



Generalizing Fomin growth

Recall Fomin growth:

A local map for cell ρ µ

ν λ

1. If there is an X, λ is ν = µ = ρ plus a square in the first row.

2. If ν = µ 6= ρ, λ is ν = µ plus a square in the row after ν\ρ.

3. Otherwise, λ = ν ∪ µ.

This is a local property which takes advantage of the fact that
Young’s lattice is a differential poset.



Differential Posets

Definition
A differential poset P

I is locally finite, graded, and has 0̂

I for every pair, there is either one or zero elements covered by
both, and the same number covering both

I every element is covered by one more element than it covers

Example

Young’s lattice and the Young-Fibonacci lattice are the most well
known.



The Young-Fibonacci lattice

I Move up:
I Insert a 1 to the left

of any 1’s.
I Change the leftmost

1 into a 2.

I Move down:
I Remove leftmost 1.
I Change a 2 without

any 1’s to its left to
a 1. ∅

1

2 11

12 21 111

112 22 121 211 1111

1112 212 122 1121 221 1211 2111 11111



Young’s lattice ∑
λ`n

fλ
2 = n!

∅
1

1

1 1
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1

1
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1

1

2

6

24

120



Young-Fibonacci lattice∑
λ∈YFD(n)

# SYFT(λ)2 = n!
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Young-Fibonacci lattice∑
λ∈YFD(n)

# SYFT(λ)2 = n!

∅
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1

1

1 1

1 2 1

1 3 2 3 1
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2
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Thank You!
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